(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
mul0(Nil, y) → Nil
add0(Nil, y) → y
goal(xs, ys) → mul0(xs, ys)

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
mul0(Nil, y) → Nil
add0(Nil, y) → y
goal(xs, ys) → mul0(xs, ys)

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
mul0(Nil, y) → Nil
add0(Nil, y) → y
goal(xs, ys) → mul0(xs, ys)

Types:
mul0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: S → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
S :: S
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_S2_1 :: S
gen_Cons:Nil3_1 :: Nat → Cons:Nil

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
mul0, add0

They will be analysed ascendingly in the following order:
add0 < mul0

(6) Obligation:

Innermost TRS:
Rules:
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
mul0(Nil, y) → Nil
add0(Nil, y) → y
goal(xs, ys) → mul0(xs, ys)

Types:
mul0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: S → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
S :: S
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_S2_1 :: S
gen_Cons:Nil3_1 :: Nat → Cons:Nil

Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(S, gen_Cons:Nil3_1(x))

The following defined symbols remain to be analysed:
add0, mul0

They will be analysed ascendingly in the following order:
add0 < mul0

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
add0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(+(n5_1, b)), rt ∈ Ω(1 + n51)

Induction Base:
add0(gen_Cons:Nil3_1(0), gen_Cons:Nil3_1(b)) →RΩ(1)
gen_Cons:Nil3_1(b)

Induction Step:
add0(gen_Cons:Nil3_1(+(n5_1, 1)), gen_Cons:Nil3_1(b)) →RΩ(1)
add0(gen_Cons:Nil3_1(n5_1), Cons(S, gen_Cons:Nil3_1(b))) →IH
gen_Cons:Nil3_1(+(+(b, 1), c6_1))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
mul0(Nil, y) → Nil
add0(Nil, y) → y
goal(xs, ys) → mul0(xs, ys)

Types:
mul0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: S → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
S :: S
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_S2_1 :: S
gen_Cons:Nil3_1 :: Nat → Cons:Nil

Lemmas:
add0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(+(n5_1, b)), rt ∈ Ω(1 + n51)

Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(S, gen_Cons:Nil3_1(x))

The following defined symbols remain to be analysed:
mul0

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
mul0(gen_Cons:Nil3_1(n468_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(*(n468_1, b)), rt ∈ Ω(1 + b·n46812 + n4681)

Induction Base:
mul0(gen_Cons:Nil3_1(0), gen_Cons:Nil3_1(b)) →RΩ(1)
Nil

Induction Step:
mul0(gen_Cons:Nil3_1(+(n468_1, 1)), gen_Cons:Nil3_1(b)) →RΩ(1)
add0(mul0(gen_Cons:Nil3_1(n468_1), gen_Cons:Nil3_1(b)), gen_Cons:Nil3_1(b)) →IH
add0(gen_Cons:Nil3_1(*(c469_1, b)), gen_Cons:Nil3_1(b)) →LΩ(1 + b·n4681)
gen_Cons:Nil3_1(+(*(n468_1, b), b))

We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).

(11) Complex Obligation (BEST)

(12) Obligation:

Innermost TRS:
Rules:
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
mul0(Nil, y) → Nil
add0(Nil, y) → y
goal(xs, ys) → mul0(xs, ys)

Types:
mul0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: S → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
S :: S
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_S2_1 :: S
gen_Cons:Nil3_1 :: Nat → Cons:Nil

Lemmas:
add0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(+(n5_1, b)), rt ∈ Ω(1 + n51)
mul0(gen_Cons:Nil3_1(n468_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(*(n468_1, b)), rt ∈ Ω(1 + b·n46812 + n4681)

Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(S, gen_Cons:Nil3_1(x))

No more defined symbols left to analyse.

(13) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
mul0(gen_Cons:Nil3_1(n468_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(*(n468_1, b)), rt ∈ Ω(1 + b·n46812 + n4681)

(14) BOUNDS(n^3, INF)

(15) Obligation:

Innermost TRS:
Rules:
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
mul0(Nil, y) → Nil
add0(Nil, y) → y
goal(xs, ys) → mul0(xs, ys)

Types:
mul0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: S → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
S :: S
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_S2_1 :: S
gen_Cons:Nil3_1 :: Nat → Cons:Nil

Lemmas:
add0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(+(n5_1, b)), rt ∈ Ω(1 + n51)
mul0(gen_Cons:Nil3_1(n468_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(*(n468_1, b)), rt ∈ Ω(1 + b·n46812 + n4681)

Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(S, gen_Cons:Nil3_1(x))

No more defined symbols left to analyse.

(16) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
mul0(gen_Cons:Nil3_1(n468_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(*(n468_1, b)), rt ∈ Ω(1 + b·n46812 + n4681)

(17) BOUNDS(n^3, INF)

(18) Obligation:

Innermost TRS:
Rules:
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
mul0(Nil, y) → Nil
add0(Nil, y) → y
goal(xs, ys) → mul0(xs, ys)

Types:
mul0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: S → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
S :: S
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_S2_1 :: S
gen_Cons:Nil3_1 :: Nat → Cons:Nil

Lemmas:
add0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(+(n5_1, b)), rt ∈ Ω(1 + n51)

Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(S, gen_Cons:Nil3_1(x))

No more defined symbols left to analyse.

(19) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
add0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(+(n5_1, b)), rt ∈ Ω(1 + n51)

(20) BOUNDS(n^1, INF)